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Department of Computer Science, College of Engineering and Science,

Louisiana Tech University, Ruston, Louisiana,

P.O. Box 10348, LA-71272, USA; email: apaun@latech.edu

Abstract. In this paper we consider the transformation from (minimal) Non-deterministic Finite
Automata (NFAs) to Deterministic Finite Cover Automata (DFCAs). We want to compare the two
equivalent accepting devices with respect to their number of states; this becomes in fact a compar-
ison between the expression power of the nondeterministic device and the expression power of the
deterministic with loops device. We prove a lower bound for the maximum state complexity of De-
terministic Finite Cover Automata obtained from Non-deterministic Finite Automata of a given state
complexityn, considering the case of a binary alphabet. We show, for such binary alphabets, that
the difference between maximum blow-up state complexity of DFA and DFCA can be as small as
2d

n
2 e−2 compared to the number of states of the minimal DFA. Moreover, we show the structure of

automata for worst case exponential blow-up complexity from NFA to DFCA. We conjecture that
the lower bound given in the paper is also the upper bound. Several results clarifying some of the
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structure of the automata in the worst case are given (we strongly believe they will be pivotal in the
upper bound proof).

Keywords: Finite automata, deterministic automata, nondeterministic automata, cover automata,
state complexity

1. Introduction

State complexity of deterministic automata is important because it gives an accurate estimate of the
memory space needed to store the automaton. In case of finite languages, Deterministic Finite Cover
Automata reduce this space by taking into account the length of the longest word in the language, so that
in practice the amount of memory necessary to store such a structure is significantly reduced (we refer
the reader to [6] for examples of languages that exhibit such high degree of reduction in the number of
states when they are described with a DFCA). In [1], [2], [3] it is proved that for a given finite language
the state complexity of a minimal DFCA is always less than or equal to the state complexity of a DFA
recognizing the same language. Using this idea, it is interesting to know whether this improvement can
always be significant or not in the number of states of the automaton, since transforming a DFA to a
DFCA is also time consuming, the best known algorithm has the time complexityO(n log n) (see [3] for
a detailed description of the algorithm).

The main purpose of this paper is to study the state complexity of the transformation from NFA to
DFCA. We will give a lower bound in the worst case for this transformation and also give some results
that we expect will be important in proving the upper bound of the transformation.

In [5] it is given an upper bound for converting NFA to minimal DFA for finite languages and non-
unary alphabets, and it is proved that the upper bound is reached in case of a binary alphabet. However,
in the general case there is no result about the structure of states/transitions of these automata.

We consider this question important and prove in the section 4 of the paper some properties of such
high complexity automata, for an arbitrary alphabet.

The unary case is not interesting for this particular problem, since for a language containing only
a word of lengthn − 1 (an−1 if our alphabet has only the lettera), a minimal NFA hasn states. The
minimal DFA in this case hasn + 1 states, and the minimal DFCA hasn states. The problem is solved,
since if a minimal NFA hasn states and the associated DFCA has more thann states, the DFCA is not
minimal.

The main results of the paper is Theorem 1 , where we prove a lower bound for state complexity of
NFA to DFCA transformations for the case of a binary alphabet, and the results in section 4 dealing with
arbitrary alphabets.

We prove that in the worst case the number of states of a minimal DFCA for a finite languageL over
a binary alphabet generated by ann-state minimal NFA can be at least as high as2n−t − 2t−2 + 2t − 1,
wheret = dn

2 e. Notice that this bound is just with2t−2 states lower than the bound obtained in [5] for
the worst case transformation from NFA to DFA.

In the next section we give some basic notations and in Section 3 we give an example of NFA of size
n, for which the corresponding DFCA has at least2n−t − 2t−2 + 2t − 1 states, proving our lower bound.

The upper bound is not yet determined precisely as opposed to the results from [5]; the reason is that
the similarity relation is more complex than equivalence relations (similarity is not transitive) making
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the discussion more involved. In Section 4 we prove that if an NFA has a particular structure, the
corresponding minimal DFCA cannot exceed our lower bound, thus restricting the number of cases that
can produce a higher complexity.

2. Notations and Preliminary Results

The number of elements of a finite setA is |A|, the empty set∅ has no elements, so|∅| = 0. An alphabet
is a finite non-empty set, usually denoted byΣ, and an element ofΣ is a letter. A word is a finite
sequence of letters, and the empty string, denoted byε, is the word with no letters. The length of a string
w = w1 . . . wn, wi ∈ Σ, 1 ≤ i ≤ n, is the numbern of letters of the word and is denoted by|w|. The
length ofε is 0. The set of all words over the alphabetΣ is denoted byΣ∗ and the set of words of length
k is Σk.

We assume the reader to be familiar with the basics in automata theory as contained in [4], [7].
A deterministic finite automaton(shortly, a DFA)A is a quintupleA = (Q,Σ, δ, q0, F ), where:

• Q is the finite set of states;

• Σ is the input alphabet;

• δ : Q× Σ −→ Q is the state transition function;

• q0 ∈ Q is the starting state, and

• F ⊆ Q is the set of final states.

A nondeterministic finite automatonA, (denoted in the following text as NFA), is a quintuple
A = (Q,Σ, δ, q0, F ), whereQ, Σ, q0, and F are defined exactly the same way as for DFA, and
δ : Q× Σ −→ 2Q is the transition function, where2Q denotes the power set of the finite setQ.

Let A = (Q,Σ, 0, δ, F ) be a deterministic acyclic automaton. We denote the minimum and maxi-
mum level of a stateq aslevA(q) = min{|w| | δ(0, w) = q} and respectively, byLevA(q) = max{|w| |
δ(0, w) = q}.

The set of states of minimum and maximum leveli is levA,i = {q ∈ Q | levA(q) = i} and
LevA,i = {q ∈ Q | LevA(q) = i}, respectively.

When the automatonA is understood, we can omit writingA as subscript in the previous notation.
Let |Σ| = p be the number of letters in the alphabetΣ. Let L be a finite language overΣ with l

the maximum length of the words inL. We denote byNL = (Σ, QN , δN , 0, FN ) a minimal NFA with
L = L(NL), and byDL = (Σ, QD, δD, 0, FD), the DFA obtained using the subset construction from
the NFANL. Therefore, we consider without any loss of generality that since|QN | = n is the number
of states in NFA, then we can re-number the states from0 to n− 1: QN = {0, 1, . . . , n− 1}.

SinceNL is minimal, then all states are useful and, also, there is a statef ∈ FN such that

1. for all q ∈ QN , there isw ∈ Σ∗ such thatf ∈ δN (q, w), and

2. δN (f, a) = ∅, for all a ∈ Σ.
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Without any loss of generality, we may assume that inNL the first stateq0 is 0, and the last final state
is n− 1 = f .

For the following results and definitions, we refer the reader to [2].
A cover automaton for a languageL with words of length less than or equal tol is a DFA accepting

a cover languageL′, i.e., a language with the property thatL′ ∩Σ≤l = L. Two wordsx, y areL-similar
if for any wordz with |z| ≤ min(l − |x|, l − |y|), we have thatxz ∈ L if and only if yz ∈ L, and write
thisx ∼L y. Two words areL-dissimilar if they are notL-similar. We can/will omit the subscript when
the languageL is understood.

A sequence of wordsx1, x2, . . . , xn is anL-dissimilar sequence if any two words in the sequence
areL-dissimilar.

In the same way we did for words, we can define the notion of similar states with respect with the
DFA DL as follows: s is similar toq in DL if for any word z of length less than or equal tomin(l −
levDL

(q), l − levDL
(s)), δD(s, z) ∈ FD if and only if δD(q, z) ∈ FD. We write this ass ∼DL

q.
We can construct a minimal cover DFACL = (Σ, QC , δC , 0, FC) using the DFADL by merging

similar states. Please, note that minimal DFCA may not be unique, we may have several non isomorphic
minimal DFCAs for the same language, but all these DFCAs have the same number of states.

The number of states in a minimal DFCA for a languageL is equal to the length of any maximal
dissimilar sequence, which is equal to the number of states in the minimal DFA minus the number of
similarities on states in the minimal DFA (see [2] for the formal definitions and proofs).

Hence, the number of states of a minimal DFCA forL is less than or at most equal to the number of
states inDL (equality only when no states are similar in the DFA).

For 0 ≤ i ≤ l, let us denote byQD,i =
⋃

S∈levDL,i

S. Please note thatQD,i ⊆ QN , while levDL,i ⊆

2QN .
Using Theorem 3 given by Salomaa and Yu in [5], we conclude that

|QC | ≤ |QD| ≤

(
2d

n log2 p
1+log2 p

e+1 − 1
)

(p− 1)
.

We investigate if this upper bound is also the lowest for the|QC | in terms ofn, and give a lower
bound for the worst case.

In order to do this, we denote byt = min{m | pm ≥ 2n−m} = min{m | m ≥ n
1+log2 p} =

d n
1+log2 pe. As we will see in the following, this number has a special role in separating states ofNL and

DL (we recall that byNL we understand a minimal nondeterministic automaton forL, and byDL the
corresponding DFA obtained fromNL using the subset construction).

We set

UB(n, p) =

(
pt − 1

)
(p− 1)

+ 2n−t − 2n−t−2, UB(n) = UB(n, 2),

LB(n, p) =

(
pt − 1

)
(p− 1)

+ 2n−t − 2t−2, andLB(n) = LB(n, 2).

In the current paper we will prove thatLB(n) is the lower bound that can be reached.
We can see thatUB(n) = LB(n), if n is even. Forp = 2, the numberUB(n) is

UB(n) = 2n−t−1 + 2n−t−2 + 2t − 1,
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and

LB(n) = 2n−t − 2t−2 + 2t − 1 =

{
2t−1 + 2t−2 + 2t − 1, if n is even

2t−2 + 2t − 1, if n is odd.

3. The lower bound for the worst case DFCA complexity

In this section we provide examples to show that the numberLB(n) given in the previous section can be
reached.

Theorem 3.1. For each integern > 1, there exists a finite languageL ⊆ {a, b} such thatL is accepted
by a minimal acyclicn-state NFA, and any complete DFCA forL has at leastLB(n) states.

Proof:
Let Σ = {a, b}. We distinguish two cases:n can be either even orn is odd.

I. If n is even we consider the languageLn = L′
n ∪ L′′

n, L′
n = {w | w = w1b, |w| = t}, L′′

n = {w |
w = uava, such that|w| < n, and|v| = bn

2 c − 2}.
The languageLn is accepted by the nondeterministic automaton withn states0, 1, ..., n − 1 with

δN (i, a) = {i + 1, t}, δN (i, b) = {i + 1} for all 0 ≤ i ≤ t − 2, δN (i, a) = δN (i, b) = {i + 1} for all
t ≤ i ≤ n− 3, δN (t− 1, a) = {t}, δN (t− 1, b) = {n− 1}, andδN (n− 2, a) = {n− 1}.

This NFA is presented in Figure 1 (please, recall thatf = n− 1).

-
����0 -a, b����1 -a, b -a, b�� ��t− 1 -a

����t -a, b -a, b�� ��n− 2 -a
����f

�
�

�
�� �a

6� �a 6& %a 6

' $
?

b

Figure 1. An example of NFA for which the DFCA reachesLB(n) states.

We will show that there are at leastLB(n) dissimilar words with respect toL.
If two words of length less than or equal tot have different length, they are not equivalent. Indeed,

let x, y ∈ Σ∗, y 6= ε, andt ≥ |x| = i > |y| = j. Thenxbt−j 6∈ Ln, since its length is greater thant (so
is not inL′

n) and also ends inb (thus, it is not inL′′
n). But ybt−j ∈ L′

n, since it has lengtht and the last
letter isb (j < i ≤ t andt− j > t− i ≥ 0), thusx 6∼L y, since|ybt−j | < |xbt−j | = i + t− j ≤ 2t− 1
and2t− 1 is exactly the length of the longest words.

For ε and words of lengtht, we check similarities with words ending inb and with words ending in
a. For the first case,ε /∈ Ln, butw = w1b ∈ Ln, for all words with|w1| = t − 1. For the second case,
if w = w1a, wan−t−1 ∈ L, butan−t−1 /∈ L, for all words with|w1| = t − 1. Henceε 6∼L w, for all w
with |w| = t.

Now we consider the case when|x| = |y| = i for 1 ≤ i ≤ t − 1. We prove that ifx is equivalent
with y, they are equal. Indeed, ifx ≡L y, and we append both words with another non-empty word, the
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results must be both inL′
n or in L′′

n, since they have the same last letter. Assuming thatx 6= y, let k be
the first position on which they differ. Without any loss of generality we can assume that on the position
k ≥ 1, x hasa andy hasb. We consider the wordz = at−i+k−1, soxz has ana on positiont counting
from the right of the word, whereasyz has ab, soyz /∈ L′′

n. Becauseyz ends ina, it cannot be inL′
n

either. Since,xz ends ina and|xz| = t− i+k−1+ i = t+k−1 andt ≤ t+k−1 ≤ 2t−1, xz ∈ L′′
n.

Hence, the wordsx andy are not equivalent; thus, all words of length at mostt−1 are not equivalent.
We have proved that these words are also non-similar, since|xz| = |yz| ≤ 2t− 1.
Let us count the number of dissimilar words of lengtht. First, let us note that two words of length

t are similar iff they are equivalent. It is easy to see that all the wordsx = aw2b ≡ y = bw2b are
equivalent, since they differ only on the first letter, they are both in the language, and for any wordz of
length greater than 1,xz ∈ L′′

n andyz ∈ L′′
n or xz /∈ L′′

n andyz /∈ L′′
n (thet-th letter from the right is the

same). In what follows, we prove that all other words of lengtht are not equivalent. Let us consider two
wordsx, y of lengtht having the same letter on the first position and having a different letter on position
k ≥ 2. We may assume thatk is the greatest with this property, and on that position is the lettera in x
and the letterb in y.

Let us consider the wordz = ak−1. Thenxz ∈ L′′
n, since ends ina (k ≥ 2, thusk − 1 ≥ 1) and

also has ana on the positiont, counted from the right (thea on positionk of x). But at the same time,
yz /∈ Ln. Since is longer thant, it is not inL′

n, and has ab on the positiont counted from the right (the
b on the positionk of y), thus is not inL′′

n either. So, we just proved that all the words that differ on a
position greater than first letter are not equivalent, and not similar either.

Let us consider the wordsx andy of lengtht, that differonly on the first letter, sox = aw1 and
y = bw1. If the last letter ofw1 is a, thenx is in the language, buty is not. Therefore, all these words
areL-dissimilar.

Counting the number of dissimilar words with respect toL, we get all words of length 1, 2, ...,t− 1,
and all words of lengtht, except2t−2 of them. Therefore, our number is1 + 22 + 23 + ... + 2t−1 + 2t −
2t−2 = 2t+1 − 1− 2t−2 = 2t + 2n−t − 2n−t−2 − 1 = 2t + 2n−t−1 + 2n−t−2 − 1 = LB(n).

II. We will consider now the second case, whenn is odd. We will prove that in this case we have
2t − 1 + 2t−2 dissimilar words, meaning that we reach againLB(n).

Let us now count the number of dissimilarities with respect toL. For any two wordsx, y with
|x| < |y| ≤ t−1, we can choosez = bt−|y| and we have that|yz| = |y|+t−|y| = t and|xz| < |yz| = t.
The wordyz is in L′

n, but the wordxz /∈ L′
n (has length less thant) and alsoxz /∈ L′′

n, because it
ends inb and does not end ina. Therefore, all these words are not similar with respect toL. Now,
let us take two distinct wordsx andy of equal length less thant − 1. We may assume without any
loss of generality thatx = x′ax′′, y = y′by′′, andx′′ = y′′. Takez = at−2−|x′′|. It follows that
|xz| = |x′|+ 1 + |x′′|+ t− 2− |x′′| = t− 1 + |x′|, soxz ∈ L′′

n ⊆ L, butyz /∈ L, sinceyz /∈ L′′
n, and

if |yz| = t, z 6= ε, therefore the last letter ofyz is a andyz /∈ L′
n.

For words of length equal tot − 1 we can apply the same proof for words ending ina and we get
2t−2 dissimilar words; for words ending inb we get only2t−3 dissimilar words. The words ending ina
and those ending inb are also dissimilar one with each other so, there are at least2t−2 + 2t−3 words of
lengtht− 1 dissimilar one with each other.

Now let us analyze words of lengtht. Let x ∈ Σt andy ∈ Σ∗, |y| < t. We distinguish the following
cases:

1. x = x′ax′′ andy = y′by′′, x′′ = y′′. We takez = at−2−|x′′|, sot ≤ |xz| ≤ 2t− 2, |yz| ≤ 2t− 2,



C. CÂMPEANU, L. KARI, A. P̆AUN / Results on Transforming NFA into DFCA 7

xz ∈ L butyz /∈ L, sinceyz /∈ L′′
n and|yz| = t impliesz 6= ε, soyz /∈ L′

n.

2. x = x′bx′′ andy = y′ay′′, x′′ = y′′. We takez = at−2−|x′′|, sot ≤ |xz| ≤ 2t− 2, |yz| ≤ 2t− 2,
yz ∈ L, butxz /∈ L, sincexz ends ina xz /∈ L′

n, andxz /∈ L′′
n.

3. y is a suffix ofx. If |y| > 1, we takez = bt−|y| 6= ε, so |xz| ≤ 2t − 2, |yz| ≤ 2t − 2 and
yz ∈ L, but xz /∈ L. If |y| ≤ 1, we takez = an−1−|x| 6= ε, soxz ∈ L, but yz /∈ L, since
|yz| = |y|+ n− 1− |x| ≤ t− 1.

For all cases we have thatx 6∼L y, since the length of the longest word inL is n− 1 = 2t− 2.
We now analyze the similarity between words of the same lengtht. We take the following words

uaxa anduaya, u ∈ {a, b}, x, y ∈ Σt−3. Without any loss of generality we may assumex = x′ax′′,
y = y′by′′, andx′′ = y′′. We takez = at−2−|x′′|, and we get thatxz ∈ L, butyz /∈ L, using the same
arguments as before. The same result we get for the words of the formatubxa andubxb, u ∈ {a, b},
x ∈ Σt−3.

If we takeuaxa andubya, we can see that the first one is in the language, while the second one is
not. The same thing happens if we takeuaxa andubyb. If we takeubxa andubyb, let z = at−2. We
have thatubxaz ∈ L, butubybz /∈ L; therefore, all words in these three categories are allL-dissimilar.

Hence, the number ofL-dissimilar words can now be counted in the following way:
t−2∑
i=0

2i +2t−2 +2t−3 +3 ·2t−3 = 2t−1−1+2t−2 +4 ·2t−3 = 2t−1+2t−2 = LB(n), which completes

the proof for the case whenn is odd.
Since in both cases (n even;n odd) we succeeded to prove that there are at leastLB(n) dissimilar

words in the given language, which actually implies that there are at leastLB(n) dissimilar states in the
corresponding DFCA we have proved the theorem. ut

Remark 3.1. The language considered in the previous theorem is the NFA constructed in [5], modified
as follows: we add a transition from the statet−1 into n−1 with the letterb, and, we delete the transition
from n − 2 into n − 1 with the letterb. The modification is required since the DFA obtained by subset
construction from the NFA in the paper [5] has2t−1 similarities and therefore, the DFCA has a much
lower state complexity.

4. Upper bounds

In this section we give some necessary conditions for a NFA to obtain less thanUB(n, p) states when
transformed to a DFCA. Therefore, if one “needs” an NFA which when transformed to a DFCA has to get
higher state complexity thanUB(n, p), then the NFA must not satisfy any of the conditions mentioned
in this section.

Since we are interested in finding an upper bound, once we establish that automata having a certain
property will not reachUB(n, p) states when transformed to a minimal DFCA, we assume that all
subsequent automata are not satisfying that particular property since our quest is to settle the discussion
about transformations from NFA to DFCA (i.e.,What is the highest possible number of states in the
DFCA when starting with ann states NFA?).

Let m = max{i | levDL,i 6= ∅}. Most of the results given in the Lemma 4.1 can be found in Salomaa
and Yu [5] in Lemma 1, Lemma 2, and Corollary 1, using a slightly different notation. We view these
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properties as an important staring point of the discussion; even though the results are given for the DFA,
the results apply also to the DFCA:

Lemma 4.1. We have the following:

1. |levDL,i| ≤ pi, 2. LevNL,i 6= ∅, for all 1 ≤ i ≤ l, 3. if LevNL
(q) = i, q /∈

⋃
j>i

QD,j ,

4. |
⋃
j≥i

QD,j | ≤ n− i, 5. |QD,i| ≤ n− i, 6. |levDL,i| ≤ min(pi, 2n−i).

Proof:

1. We have that:levDL,0 = {0} and|levDL,i+1| ≤ p · |levDL,i|.

2. Assume that there isj, j ≤ l such thatLevNL,j = ∅. Thenl < j, contradiction.

3. If q ∈ S, S ∈ levDL,j andj > i, if follows that there isw ∈ Σ∗, such thatq ∈ δN (0, w), i.e.,
LevNL

(q) ≥ j > i, contradiction.

4. This follows from the fact that for eachi, 1 ≤ i ≤ m, there is at least one stateq ∈ QD,i for which

q /∈
⋃
j>i

QD,j .

5. Follows from 4.

6. Follows from 5 and 1.
ut

Lemma 4.2. If the maximum level in the DFA is less thant, (i.e., m < t,) then we have|QD| <
UB(n, p).

Proof:
If m < t (m the maximum level in DFA), then we have thatm ≤ t − 1, and using the Lemma 4.1 we

obtain: |QD| ≤
m∑

i=0

|levDL,i| ≤
m∑

i=0

pi ≤
t−1∑
i=0

pi < UB(n, p), which proves the statement. ut

Since form < t the number of states inQD is less thanUB(n, p), in what follows we consider only
the caset ≤ m.

For the states of level less thant we analyze what happens if two of them have the same maximum
level in the NFA.

Lemma 4.3. Assume there is1 ≤ i ≤ t − 1 and there are two statess, q ∈
⋃
j≥i

QD,j such thats, q /∈⋃
j>i

QD,j . In these conditions we have that|QD| < UB(n, p).
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Proof:
Let s, q satisfying the properties mentioned in the lemma. Then for allj > i |

⋃
k≥j

QD,k| ≤ 2n−(j+1)

using the same reasoning as in Lemma 4.1 property 4, but now we have two states that appear up to level
i. Using this and the fact that the number of subsets of a set withn − (j − 1) − 2 elements is at most
2n−(j+1) we get the inequality.

The next step is to approximate the number of states inQD by considering the maximal possible
number of states on level 0, on level 1, on level 2, and so on up to levelj and, then the rest of states that
can be found on a level greater thanj using the previous inequality. It is easy to notice that this particular
value is maximal whenj = t.

Hence, we havepk possible states on each of the levels0 ≤ k ≤ t− 1 plus the number of states that
are of levelt of higher using the result obtained above.

|QD| ≤ 1 + p + . . . pi−1 + pi + . . . + pt−1 + 2n−t−1

= 1 + p + . . . pi−1 + pi + . . . + pt−1 + 2n−t − 2n−t−1

= 1 + p + . . . pi−1 + pi + . . . + pt−1 + 2n−t − 2n−t−1 + 2n−t−2 − 2n−t−2

= 1 + p + . . . pi−1 + pi + . . . + pt−1 + 2n−t − 2n−t−2 + 2n−t−2 − 2n−t−1

= UB(n, p) + 2n−t−2 − 2n−t−1 < UB(n, p).

ut

Therefore, at each leveli, 0 ≤ i ≤ t− 1, in DFA there is one state and only onei present in all states
from that levelS ∈ levDL,i, and is only in these states. Without any loss of generality, we may assume
that the name of the state on leveli is exactlyi, i.e.,i + 1 ∈ δN (i, a), for all a ∈ Σ, when0 ≤ i ≤ t− 1.
Also, for states greater thant we may assume that they are topologically ordered, i.e.,δ(i, a) = j implies
i < j, for all t ≤ i, j ≤ n− 1.

As a consequence, for any stateS ∈ QD, S ⊆ {t, t + 1, . . . , f} , S 6= δD(R, a), for anyR ∈ QD

andR ∩ {0, . . . , t− 2} 6= ∅.

Lemma 4.4. If there existsi, 0 ≤ i ≤ t− 2, δN (i, a) = δN (i, b), |QC | ≤ UB(n, p).

Proof:
Sincet = d n

1+log2 pe, n ≤ 2t, son − t − 2 ≤ t − 2. Now, assume there isi, 0 ≤ i ≤ t − 2, such that
δN (i, a) = δN (i, b). Then

|QD| ≤ 1 + p + p2 + . . . + pi + pi + pi+1 + . . . + pt−2 + 2n−t

= 1 + p + p2 + . . . + pi + pi + pi+1 + . . . + pt−2 + pt−1 + 2n−t − 2n−t−2 + 2n−t−2 − pt−1

= UB(n, p) + pi + 2n−t−2 − pt−1 ≤ UB(n, p) + pt−2 − pt−1 + 2n−t−2

= UB(n, p)− pt−2 + 2n−t−2 ≤ UB(n, p) + 2n−t−2 − 2t−2

≤ UB(n, p)

ut
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One can easily observe from the proof of the previous lemma, that forp > 2, orp = 2 andi < t− 2,
or p = 2, i = t− 2, andn odd, the inequality is strict.

The next lemma proves that if we have a final states ∈ QN , t ≤ s < f , we cannot reach the upper
bound forQD (therefore, neither forQC).

Lemma 4.5. If q ∈ FN , q 6= f , q ≥ t, for anyS ⊆ {t, t+1, . . . , n− 2}, with (S ∪{f, q}), (S ∪{q}) ∈
QD, then we have(S ∪ {f, q}) ≡ (S ∪ {q}).

Proof:
Recall thatf = n − 1. We have thatf ∈ δD(S ∪ {f, q}, ε) ∈ FD, q ∈ δD(S ∪ {q}, ε) ∈ FD. So we
cannot distinguish withε.

If w ∈ Σ+, δD(S ∪ {f, q}, w) = δD(S ∪ {q}, w) ∪ δD({f}, w) = δD(S ∪ {q}, w) ∪ ∅ = δD(S ∪
{q}, w). ut

Corollary 4.1. If q ∈ FN , q 6= f , q ≥ t, |QC | < UB(n, p).

Proof:
We have that the number of states in a cover automaton:

|QC | ≤ 1 + p + . . . + pt−1 +
2n−t

2
≤ 1 + p + . . . + pt−1 + 2n−t − 2n−t−1

< 1 + p + . . . + pt−1 + 2n−t − 2n−t−2

= UB(n, p).

This happens because we lost all the equivalent sets of states from the level greater than or equal tot that
containedq. ut

The following lemma continues the discussion for the states that appear on a level greater thant.

Lemma 4.6. If for all w ∈ Σ∗ with the property thatδ(t, w) = f we have that|w| = n − 1 − t, then
|QC | < UB(n, p).

Proof:
We prove the states{t} ∪ S andS are similar for everyS ⊆ {t + 1, . . . , f}.

Indeed, if a stateS ⊆ {t + 1, . . . , f} is reachable inDL its level is at leastt + 1, therefore we need
to check the states{t}∪S andS with all words of length at mostn− 1− (t + 1) = n− t− 2. Since for
such wordsw, δN (t, w)∩FN = ∅, it follows thatδD(({t}∪S), w) ∈ FD iff δD(S, w) ∈ FD, for all w ∈
Σ≤n−t−2, i.e.,({t} ∪ S) ∼DL

S. The number of such pairs of similar states is2n−1−(t+1)+1 = 2n−t−1.
Since, all reachable similar states inDL are merged into one in the minimal DFCACL, the number of
states inCL is at mostp

t−1
p−1 + 2n−t − 2n−t−1 < UB(n, p) ut

If the condition on the above lemma is not satisfied, there is a wordw ∈ Σ∗ with δ(t, w) = f and
|w| < n − 1 − t. Let s be the first state greater thant − 1 for which (s + 1), q ∈ δ(s, a), a ∈ Σ or
{(s + 1)} = δ(s, a), and there is another letterb ∈ Σ such thatq ∈ δ(s, b), andf ∈ δ(q, u) for some
|u| < n− t− 2. We can continue the discussion by considering these cases:



C. CÂMPEANU, L. KARI, A. P̆AUN / Results on Transforming NFA into DFCA 11

1. (s + 1), q ∈ δ(s, a) and

2. (s + 1) ∈ δ(s, a), q ∈ δ(s, b), andf ∈ δ(q, u) for somea, b ∈ Σ and|u| < n− t− 2.

In the first cases + 1 cannot occur in any stateS ∈ QD, S ⊆ {t, . . . , n − 1} without q. Therefore, in
this case|QD| ≤ pt−1

p−1 + 2n−t − 2n−t−1+1−1 = pt−1
p−1 + 2n−t − 2n−t−1 < UB(n, p).

In the second case, the problem is still open.

5. Conclusion

We have proved that for an NFA withn states accepting a finite language over a binary alphabet the
equivalent minimal DFCA has at least2d

n
2
e−2 less states than the number of states of the minimal DFA.

Moreover, the number of languages for which this (associated DFCA) complexity is high, could be
viewed as low when it is compared with the total number of NFAs of sizen. This could prove very useful
if one needs to make memory estimations according to the structure of an NFA given as input. In the
section 4 we have given several results that provide more understanding of the structure of automatons
that will yield the worst number of states when they are transformed into a DFCA. The discussion was
given for a general alphabet of sizep, one could consider the restriction to binary alphabets to obtain a
better understanding of the structure of the NFA in that case. Of course, the discussion becomes more
involved if one considers arbitrary alphabets.
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[1] Cezar Ĉampeanu and Andrei Păun, Counting The Number of Minimal DFCA Obtained by Merging States,
International Journal of Foundations of Computer Science, Vol. 14, No 6, December (2003), 995 – 1006.
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